
Simulation and Validation of a SpaceWire On-Board
Data-Handling Network for the PLATO Mission

M. Rotundo∗, A. Leoni∗, L. Serafini†, C. Del Vecchio Blanco†, D. Davalle‡, D. Vangelista†,
M. Focardi§, R. Cosentino¶, S. Pezzuto‖, G. Giusy‖, D. Biondi‖, L. Fanucci∗

∗Department of Information Engineering, University of Pisa, Pisa, Italy
†Kayser Italia S.r.l., Livorno, Italy
‡IngeniArs S.r.l., Pisa, Italy

§Arcetri Astrophysical Observatory, INAF-OAA, Florence, Italy
¶Galileo Galilei Foundation, La Palma, Canary Island, Spain

‖Inst. of Space Astrophysics and Planetology, INAF-IAPS, Rome, Italy

Abstract—PLAnetary Transits and Oscillations of stars
(PLATO) is a medium-class mission belonging to the European
Space Agency (ESA) Cosmic Vision programme. The mission
payload is composed of 26 telescopes and cameras which will
observe uninterruptedly stars like our Sun in order to identify
new exoplanets candidates down to the range of Earth ana-
logues. The images from the cameras are generated by several
distributed Digital Processing Units (DPUs) connected together in
a SpaceWire network and producing a large quantity of data to
be processed by the Instrument Control Unit. The paper presents
the results of the analyses and simulations performed using the
Simulator for HI-Speed Networks (SHINE) with the objective to
assess the on-board data network performance.

I. INTRODUCTION

PLAnetary Transits and Oscillations of stars (PLATO) is the
third medium-class mission belonging to the European Space
Agency (ESA) Cosmic Vision programme which objective is
to find and study extrasolar planetary systems. PLATO payload
is composed of 26 telescopes which will observe uninterrupt-
edly stars like our Sun in order to identify a particular pattern
of the star brightness pointing out, therefore, the transit of
an exoplanet. PLATO payload consists of several distributed
Digital Processing Units (DPUs) connected together by a
SpaceWire network. The DPUs produce a large quantity of
data requiring an on-board data processing/compression before
transmitting telemetry on Earth. In such a context, an assess-
ment of the on-board data network performance becomes a
challenge.
A first analysis was carried out in order to understand the
capability of the network architecture to manage the required
data-flows with average data-rates. A second analysis was
addressed to overcome the constraints of the previous study.
This second analysis makes use of the Simulator for HI-Speed
Networks (SHINE). SHINE is an OMNeT++ based simulator
fully compliant to the SpaceWire standard able to define the
topology of a data network and provide tools to find and
improve networks criticalities.
The PLATO on-board data network was modeled and simu-
lated with SHINE in terms of data flows taking into account
the overhead introduced by the involved data communication

protocols (SpaceWire, RMAP, CCSDS Packet Transfer Proto-
col / PUS). The data bandwidth of the most critical links was
measured in simulation focusing on the critical links in the
Instrument Control Unit (ICU) that collects all data coming
from the PLATO DPUs. In the end, it was also possible to
assess the propagation of SpaceWire time-codes through the
ICU and check the compliance of the simulation results with
the PLATO requirements [2].

II. INTRODUCTION TO THE SHINE SIMULATOR

The Simulator for HIgh-speed NEtworks is a SpaceWire
simulator built upon OMNeT++ which objective is to give
the capabilities to analyze and point out possible bottlenecks
in an early phase of development. It is possible for the user
exploiting OMNeT++ capabilities to describe the nodes and
topology of a network in terms of parameters and connections
with the NED language. For each node is then associated a
C++ class, that describes its behavior.
SHINE simulation granularity is at word level, where a word
has a different meaning for each protocol:

• for SpaceWire it could be a Data Character (10 bits), an
EOP or EEP (4 bits), an FCT (4 bits), a TimeCode (14
bits) or a NULL (8 bits);

• for a generic communication it is an 8 bits word which
does not carry any protocol information.

A word level simulation allows to simulate in details all the
events that are important from a protocol point of view while
saving a lot of simulation time. Parameters like the Quality
of Service, the packets latency, the used bandwidth and so on
can be measured accurately at this level.

III. PLATO SCIENTIFIC DATA INSTRUMENT NETWORK
DESIGN AND DATA FLOWS

The network architecture in Figure 1 shows the PLATO
Scientific Data Instrument Network main blocks and their
interconnection.
The main modules are:

• Data Processing Units (DPUs);
• Instrument Control Unit (ICU);

ar
X

iv
:1

80
8.

09
87

4v
1 

 [
as

tr
o-

ph
.I

M
] 

 2
9 

A
ug

 2
01

8



Fig. 1. PLATO Scientific Data Instrument Network Design and Data Flows
(compressed data flows in red and raw scientific data flow in blue) [1]

• Spacecraft Service Module (SVM).

The PLATO payload data processing system is made up of
the DPUs and the ICU, with data routed through a SpaceWire
network. Each DPU is connected to the ICU through a
SpaceWire link. Finally, the SVM is also connected to the
ICU by means of a SpaceWire link.

A. Data Processing Units

DPUs are the modules which have the purpose to collect,
process and forward scientific data to the ICU. There are
two types of units: normal and fast. Normal DPUs are 12
and each one is responsible for processing the data of 2
normal cameras. 6 N-DPUs are collected in a MEU (Main
Electronics Unit) linked to the ICU through a SpaceWire
link. Each of the 2 F-DPU processes the data from one fast
camera and both are collected in a FEU (Fast Electronics Unit)
connected to the ICU through a SpaceWire link. Finally the
AEU (Auxiliary Electronics Unit) provides secondary voltages
and synchronization signals and send to the ICU housekeeping
data through a SpaceWire link.
There are two possible configurations for each of them:

• observation mode;
• calibration mode.

In the observation mode the data rates and packet sizes
are in Table I. The data rates are an updated version of the
one specified in the user requirements [2]. The average packet
size is not specified, however it could be computed with the
equation 1:

AveragePacketSize =
AverageDataRate

8× PacketsNumberPerSec
(1)

In calibration mode, only one node is active and it is
transferring with a data rate of 27 Mbit/s.

TABLE I
DPUS DATA-RATE AND PACKET SIZE IN OBSERVATION MODE [2]

DPU Data-rate Packet size (bytes)
N-DPU 0.863Mbps 3608

MEU (6 N-DPU) 5.178Mbps

F-DPU 0.4184Mbps 3256

FEU (2 F-DPU) 0.8368Mbps

N-AEU 204.8bps 32

F-AEU 204.8bps 32

Total 11.2Mbps

B. Instrument Control Unit

The ICU has the purpose of interfacing the telescopes
electronics with the PLATO SVM. It collects the data sent by
DPUs in order to pre-process these data before sending them
to the SVM. The instrument control unit of PLATO contains
two electronics chains working in cold redundancy. For the
sake of the simulation, it is not useful to present the system
with its redundancy.
The ICU could be divided in further subsystems:

• Router Data Compressor Unit (RDCU): composed by a
SpaceWire switch and an hardware compressor (compres-
sion rate should be at least 0.5);

• CPU/MMU: composed by a UT700 Leon based CPU
and an FPGA which has the goal to expand the CPU
processing, communication and storage capabilities. The
communication between the CPU and FPGA is performed
by a PCI bus (32bit@33MHz, one transaction in 4
clock cycles). In the FPGA all the interfaces (SpaceWire,
Memory and PCI) are connected through an AMBA AHB
bus (32bit@25MHz, one transaction in 4 clock cycles).
The UT700 is able to address only 512 Mbyte of SDRAM
protected by an EDAC memory controller. In order to
reach the required total mass memory of 1 Gbyte, an
EDAC memory controller in the FPGA is also used to
interface other 512 Mbyte of SDRAM;

• Power Supply Unit: it is based on DC/DC converters. It
receives the 28V from the Spacecraft Service Module and
provides the supply voltages to the ICU modules.

C. Spacecraft Service Module

The Spacecraft Service Module (SVM) is the PLATO in-
ternal unit which is in charge to send telecommands and to
retrieve the telemetry by the DPUs. A typical telecommand
rate in-orbit is only 1 telecommands per second, however
for on-ground testing a higher rate should be possible to
reduce the upload time. According the user requirements the
telecommand flow data-rate is of 100 Kbyte/s [2].

D. Data Flows

As reported in the ICU design report [1], the data flows are
ten (Figure 1 shows all the data flows):

1) telemetry data sent to FPGA SDRAM via RDCU switch
by PLATO DPUs;



2) data are read from the FPGA SDRAM, unpacked and
stored in CPU SDRAM by UT700;

3) data are written to FPGA SDRAM (for RMAP con-
troller) by UT700;

4) data are sent to RDCU for data compression by MMU
FPGA;

5) compressed data are received and written to FPGA
SDRAM by MMU FPGA;

6) compressed data are transferred to CPU SDRAM by
UT700;

7) compressed data are sent to S/C as telemetry by UT700;
8) telecommands are received from S/C and stored in CPU

SDRAM by UT700;
9) some telecommands shall be forwarded and so sent to

FPGA SDRAM by UT700;
10) telecommands are forwarded to PLATO DPUs by RDCU

switch.

IV. PROTOCOLS OVERHEAD ANALYSIS

The PLATO SpaceWire network has the objectives of
forwarding telecommands and downloading telemetries. Pro-
tocols as RMAP and CCSDS Protocol Trasfer Packet
(with packet PUS formatted) are used over SpaceWire
to access devices configuration and to distribute teleme-
tries/telecommands.

In this section, the overhead introduced by these protocols
is presented.

A. SpaceWire Protocol Overhead

The SpaceWire protocol overhead is due to several factors:
• data bytes are transmitted as 10-bit data characters, given

by the information byte plus a parity bit and a data-control
bit;

• each packet is terminated by a 4-bit End of Packet (EOP);
• a Flow Control Token (FCT) is transmitted every 8 data

characters received (data bytes or EOPs).
In order to compute the real traffic on the link all data
characters, EOP and FCT forwarded are recorded. When the
simulation finishes, the bandwidth is computed according to
the formula 2 (units bps, then converted to Mbps).

Bandwidth = 10×NDATA+4×NFCT+4×NEOP
Tsimulation

(2)

where:
• Tsimulation is the duration of the simulation;
• NDATA is the total number of SpaceWire data character

forwarded during the simulation;
• NEOP is the total number of SpaceWire EOP forwarded

during the simulation;
• NFCT is the total number of SpaceWire FCT forwarded

during the simulation.

B. RMAP Protocol Overhead

All the functions required by PLATO could be achieved
with the following RMAP commands:

• Write;
• Write Reply;

TABLE II
RMAP OVERHEAD COMMANDS

RMAP Command Overhead Size (bytes)
Write 29

Write Reply 9

Read 28

Read Reply 15

TABLE III
CPTP OVERHEAD

CPTP Field Size (bytes)
Target SpW Address 2

Target Logical Address 1

Protocol Identifier 1

Reserved 1

User Application 1

Total overhead 6

TABLE IV
PUS OVERHEAD

PUS Field Size (bytes)
Primary header 6

Secondary header TM 11

Secondary header TC 3

Packet Error control 2

Total PUS TM Overhead 20

Total PUS TC Overhead 11

• Read;
• Read Reply.

The overhead is computed as the sum of each size field and
the results are in Table II.

C. CCSDS Packet Protocol Transfer Overhead

The CCSDS Packet Transfer Protocol (CPTP) encapsulates
a CCSDS Space Packet into a SpaceWire one and transfer
it from an initiator to a target. In Table III, the overhead
is computed. Two bytes are considered for the Target SpW
Address in the worst case when a NDPU in the MEU must
be reached.

D. Packet Utilization Standard (PUS) Overhead

The PUS overhead is computed in Table IV. Source ID
and Destination ID are omitted because only one source of
telecommands is present. The TIME format is the Ccsds
Unsegmented time Code (CUC) which needs 7 bytes.

V. SIMULATION MODEL

The basic idea is to convert each module from the real
architecture network in the respective SHINE SpaceWire block
and implement a proper application entity able to simulate its
behavior (Figure 2).
The SHINE simulator does not provide any capability for



Fig. 2. SHINE Model of the PLATO Scientific Instrument Data Network

simulating the RMAP and CPTP/PUS and therefore the over-
head introduced by such protocols must me implemented. The
solution has been to fill packets with a number of overhead
bytes as computed in the previous overhead analysis.
The CPU/MMU unit has also an intrinsic complexity due
to the internal buses and memories access that must be
taken into account. Specific nodes that realize bus arbitrage
and a memory controller are implemented. Two policies are
implemented for the bus arbiter node: Round-Robin for the
AHB AMBA bus and First Come First Served (FCFS) for the
PCI bus.

The flows generated in the simulation are (which are also
the simulation input):

• telemetries from the DPUs to the ICU;
• telecommands and time-codes from the S/C.

The internal flows will be simulated as a result of the applica-
tion interaction among the nodes. Due to lack of information
about inter-arrival and size of the packet distributions, it will
be analyzed the worst case which is when all the modules are
sending data at the same time in a burst transmission.

Different kinds of messages are distributed among the
PLATO network which it is possible to assume having dif-
ferent priorities. In decreasing priority the messages are:

1) Time-code messages (higher priority by SpW standard,
however the priority must be also guaranteed on the
internal buses);

2) Compression requests and compressed scientific data;
3) Telemetry messages;
4) Telecommands.
The signals that will be recorded and represent the simula-

tion output are the:
• FPGA AHB AMBA bus data-rate;
• PCI bus data-rate;
• bidirectional link data-rate between RDCU and

CPU/MMU;
• sending time time-codes for ICU;
• arrival time time-codes at the ICU.

According to the ICU-UR-450 requirement: "On reception of
a SpaceWire time-code sent by the SVM, the ICU shall send a
SpW time-code to all DPUs (N and F) less than 10e-06s after
(i.e. better than 1.01msec ICU timer accuracy)". This is a very

TABLE V
RDCU<–>CPU/MMU BANDWIDTH

Observation Mode
RDCU–>CPU/MMU Bandwidth (Mbps) 21.98

RDCU–>CPU/MMU Link Utilization (%) 21.98

CPU/MMU–>RDCU Bandwidth (Mbps) 15.48

CPU/MMU–>RDCU Link Utilization (%) 15.48

Calibration Mode
RDCU–>CPU/MMU Bandwidth (Mbps) 64.66

RDCU–>CPU/MMU Link Utilization (%) 64.66

CPU/MMU–>RDCU Bandwidth (Mbps) 26.97

CPU/MMU–>RDCU Link Utilization (%) 26.97

TABLE VI
AMBA BANDWIDTH

Observation Mode Average Worst
AMBA Bandwidth (Mbps) 58.141 172.28

AMBA Link Utilization (%) 29.08 86.14

Calibration Mode
AMBA Bandwidth (Mbps) 131.78 179.54

AMBA Link Utilization (%) 65.89 89.77

strict requirement that should be checked. Storing the sending
and arrival time of the time-code would allow to analyze the
latency and to validate this requirement.

VI. RESULTS ANALYSIS

Due to the two possible DPUs mode, two simulations are
performed: one where DPUs are in observation mode and
another one in calibration mode with both a duration of 5
simulated seconds.

In Table V, it could be observed the results obtained for the
bidirectional link bandwidth between RDCU and CPU/MMU
in both simulations. These values guarantee a safe margin with
respect the link rate capability of 100Mbps.

The AHB AMBA bus is the most critical link in the network
having to deal with several data flows. During the simulation
the bus bandwidth is recorded whenever a transmission is
performed.
Figure 3 shows the bandwidth trend during the simulation.
It has a first initial peak and then it stabilizes on a steady
value. This behavior depends on the input generation which is
implemented as a burst. At the beginning, the peak is due to
the distance to the reference.
The bandwidth link constraints of 200Mbps are respected in
the average and worst case as pointed out by Table VI. As it
is possible to see, the bandwidth value is about 5 times the
total input data-rate. This makes sense considering in total 6
bus accesses for each data where two are are performed by
the compressed data by half.
The considerations for the PCI bus bandwidth are very similar
to the AMBA one. It is less critical due to the minor numbers
of bus transactions. This is reflected in the bandwidth (Table
VII) which is about the the half the AMBA bandwidth. The



TABLE VII
PCI BANDWIDTH

Observation Mode Average Worst
PCI Bandwidth (Mbps) 29.96 86.10

PCI Link Utilization (%) 11.01 32.61

Calibration Mode
PCI Bandwidth (Mbps) 65.52 90.83

PCI Link Utilization (%) 24.82 34.41

TABLE VIII
TIME-CODE ANALYSIS

Statistic Sim 1 Sim 2
Min (s) 7.83E-07 7.64E-07

Max (s) 5.4264E-05 9.48E-07

Mean (s) 5.4264E-05 8.5167E-07

Standard Deviation (s) 8.4551E-06 4.0472E-08

Time-codes respecting ICU_UR-450 22.92% 100%

constraint with respect to the link rate of 264Mbps is also
respected.
Several simulations are also performed in order to analyze the
time-code latency in both calibration mode and observation
mode. For the sake of simplicity, in Table VIII in the first
simulation the calibration mode case is presented which rep-
resents a worst scenario due to the higher load of data on the
internal buses. From these results, it is possible to observe
that the requirement is not respected. Even guaranteeing an
higher priority to the time-codes from an application point
of view is not enough, the traffic on the bus could affect
the time propagation for the time code causing the deadline
miss. The proposed solution is to modify the policies on the
Round-Robin and FCFS bus policies in order to guarantee
on the bus an higher priority for the time-codes transactions
requests. A last simulation is performed in calibration mode
setting these special policies for the bus. Table VIII shows the
statistics of this second simulation. The time-codes latencies
fully respect the requirement and the standard deviation is also
lower proving the possibility to obtain a better determinism.
Currently, the simulation analysis has been performed as
the last step in a feasibility analysis work-flow. Firstly, two
analyses have been carried out by Kayser Italia and IngeniArs
which have analyzed the network assessment in the average
case. The simulation has been made to confirm such analyses
and also to give some results in a worst case.
A comparison with the analytic analysis made by IngeniArs
and Kayser is performed in Table IX. Numerically the results
are very similar and have confirmed the feasibility of the
network in the average case.

VII. CONCLUSION

The PLATO simulations results confirmed the analysis
carried out by IngeniArs and Kayser in the average case.
However, important results and suggestions were also obtained
in the worst case when the input nodes are burst transmitting.

Fig. 3. AMBA Bus Bandwidth in Observation Mode - The bandwidth bus
(Mbps in y-axis) is evaluated during the simulation. (Seconds in x-axis)

TABLE IX
COMPARISON ANALYSIS

Link Link Link
ICU Link Occupation Occupation Occupation

Simulation Kayser IngeniArs
RDCU->CPU/MMU 21.98% 22.9% 21.1%

CPU/MMU->RDCU 15.58% 15.2% 15.1%

PCI 11% 11.8% 10%

AMBA 29% 27% 32.3%

In the simulations it was also pointed out the difficulty to
respect the time-code latency requirement. A possible solu-
tion was suggested to solve the problem implementing new
arbitration policies for the AMBA and PCI bus. Indeed, new
simulations proved that using a modified Round-Robin and
FCFS policies respectively for the AMBA and for the PCI bus
is possible to fully respect the time-code latency requirement.
The outcome could be improved in the future when the input
distributions (like packet inter-arrival time and packet size)
will be available and simulating the internal ICU protocols
with the same degree of accuracy of the SpaceWire network.
In the future, it will be interesting to compare the bandwidth
results obtained in a test with the real hardware with the ones
obtained in the simulation concluding the assessment analysis
work-flow.

VIII. ACKNOWLEDGMENTS

A special acknowledgment to the European Space Agency
for the support provided by the PLATO Study Team. This
work has been funded thanks to the Italian Space Agency
(ASI) support to the Phases B/C of the Project, as defined
within the ASI-Kayser Italia contract n. 2017-1-I.0 "Phase
B/C1 industrial activities for PLATO ICU realization". Finally,
we would also like to show our gratitude to the University of
Pisa for the support during the development of this research
project.

REFERENCES

[1] Kayser-Italia, KI-PLATO-RP-015 - PLATO ICU Design Report.
[2] PLATO-DLR-PL-RS-002, ICU User Requirement Specification.
[3] ECSS-E-ST-50-53C, SpaceWire - CCSDS packet transfer protocol.
[4] ECSS-E-ST-5012C, SpaceWire - Links, nodes, routers and networks.
[5] ECSS-E-ST-50-52C, SpaceWire - Remote memory access protocol.
[6] ECSS-E-70-41, Telemetry and telecommand packet utilization.


	I Introduction
	II Introduction to the SHINE Simulator
	III PLATO Scientific Data Instrument Network Design and Data Flows
	III-A Data Processing Units
	III-B Instrument Control Unit
	III-C Spacecraft Service Module
	III-D Data Flows

	IV Protocols Overhead Analysis
	IV-A SpaceWire Protocol Overhead
	IV-B RMAP Protocol Overhead
	IV-C CCSDS Packet Protocol Transfer Overhead
	IV-D Packet Utilization Standard (PUS) Overhead

	V Simulation Model
	VI Results Analysis
	VII Conclusion
	VIII Acknowledgments
	References

